
TeXsor3DG
An Explicit 3D Cartesian Discontinous Galerkin
Spectral Element Compressible Navier-Stokes

Solver

Andrew C. Kirby & Dimitri J. Mavriplis

Department of Mechanical Engineering
University of Wyoming

Applied Modeling & Simulation Seminar Series
NASA Ames Research Center

August 12, 2014

Motivation

High order methods in aerodynamics

Higher accuracy with fewer degrees of freedom

Fewer elements needed

Nodal Discontinuous Galerkin finite elements

Cartesian Setting-Higher efficiency per degree of freedom

Governing Equations

Compressible Navier-Stokes equations

∂Um

∂t
+
∂Fmi

∂xi
= 0

Conservative variables U = {ρ, ρu, ρv , ρw , ρE}T

F =


ρu ρv ρw

ρu2 + P − τ11 ρuv − τ12 ρuw − τ13

ρuv − τ21 ρv2 + P − τ22 ρvw − τ23

ρuw − τ31 ρvw − τ32 ρw2 + P − τ33

ρuH − τ1juj + q1 ρvH − τ2juj + q2 ρwH − τ3juj + q3


ρE =

P

γ − 1
+

1

2
ρ(u2 + v2 + w2)

DG Formulation

Multiply by test function and integrate∫
Ω

Ψr

(
∂Um

∂t
+
∂Fmi

∂xi

)
dΩ =

∫
Ω

ΨrSmdΩ

Integrate by parts

Rmr =

∫
Ω

(
Ψr
∂Um

∂t
−ΨrSm −

∂Ψr

∂xi
Fmi

)
dΩ+

∫
Γ

ΨrFminidΓ = 0

Inviscid flux: Lax-Friedrichs and Roe

Viscous flux: symmetric interior penalty (SIP)

Tensor Basis Functions

Letting Ψijk = φξ1
i
φξ2

j
φξ3

k
for i , j , k = 0, · · · ,M and solution

expansion coefficients a, written as:

Um (ξ, t) =
M∑
k=0

M∑
j=0

M∑
i=0

aijk(t)φξ1
i
φξ2

j
φξ3

k

Let φξi = Li , the 1-D Lagrange polynomial using the
Gauss-Legendre quadrature points.

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures

- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz

- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications

- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

Solver Capabilities

• Nodal Discontinuous Galerkin Finite Elements

- solution coefficients are the solutions at the quadrature
points – mass matrix is diagonal

- dense kernels

– block matrix coupling is contained within an
element–all DOF close in memory

- suited for massively parallel HPC type architectures
- use coarser grids

– overhead for AMR reduced and grid related issues

• Cartesian framework

- dx 6= dy 6= dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish

• Polynomial degree of p=63

- Restricted by CPU RAM on computing nodes (p=15)

64th Order Solution

64th Order Solution

Solver Capabilities Cont.

• Explicit time stepping through Method of Lines

- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)

* explicit time step consistent with Laslo Diosady and
Scott Murman1

δt = min

(
S ∗ h

4 (‖U‖+ c)
,
h2

ν

)
h =

min(dx , dy , dz)

(p + 1)2.5

S = Number of Stages

• Parallel through MPI

1Design of a Variational Multiscale Method for Turbulent Compressible Flows

Solver Capabilities Cont.

• Explicit time stepping through Method of Lines

- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)
* explicit time step consistent with Laslo Diosady and

Scott Murman1

δt = min

(
S ∗ h

4 (‖U‖+ c)
,
h2

ν

)
h =

min(dx , dy , dz)

(p + 1)2.5

S = Number of Stages

• Parallel through MPI

1Design of a Variational Multiscale Method for Turbulent Compressible Flows

Solver Capabilities Cont.

• Explicit time stepping through Method of Lines

- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)
* explicit time step consistent with Laslo Diosady and

Scott Murman1

δt = min

(
S ∗ h

4 (‖U‖+ c)
,
h2

ν

)
h =

min(dx , dy , dz)

(p + 1)2.5

S = Number of Stages

• Parallel through MPI
1Design of a Variational Multiscale Method for Turbulent Compressible Flows

Validation Results: Ringleb Flow

Problem Description2

Governing equations: 2D Euler equations with γ = 1.4

2http://www.as.dlr.de/hiocfd/case c1.2.pdf

Validation Results: Ringleb-Rho

P 1 2 4 6 9

Slope 1.975562 3.056287 4.90858 7.016717 9.259090

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-2

10
-1

10
0

L
in

f
E

rr
o

r

Mesh Size h

Mesh Size vs. Linf Error: rho

p = 1: 1.975562
p = 2: 3.056287
p = 4: 4.908581
p = 6: 7.016717
p = 9: 9.259090

Validation Results: Ringleb-RhoU

P 1 2 4 6 9

Slope 2.000943 2.912026 4.860378 6.937690 10.51220

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-1

10
0

L
in

f
E

rr
o

r

Mesh Size h

Mesh Size vs. Linf Error: rho*u

p = 1: 2.000943
p = 2: 2.912026
p = 4: 4.860378
p = 6: 6.937690

p = 9: 10.512207

L∞ norm- RhoU

Validation Results: Ringleb-RhoV

P 1 2 4 6 9

Slope 1.804886 2.877250 4.990545 7.481386 9.754523

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-1

10
0

L
in

f
E

rr
o

r

Mesh Size h

Mesh Size vs. Linf Error: rho*v

p = 1: 1.804886
p = 2: 2.877250
p = 4: 4.990545
p = 6: 7.481386
p = 9: 9.754523

L∞ norm- RhoV

Validation Results: Ringleb-RhoE

P 1 2 4 6 9

Slope 1.974541 2.998977 4.906502 6.895422 9.141250

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-2

10
-1

10
0

L
in

f
E

rr
o

r

Mesh Size h

Mesh Size vs. Linf Error: rho*E

p = 1: 1.974541
p = 2: 2.998977
p = 4: 4.906502
p = 6: 6.895422
p = 9: 9.141250

L∞ norm- RhoE

Validation Results:Taylor Green Vortex

Problem Description3

Domain: [−πL, πL]3

M0 = 0.1

Re = 1600

Pr = 0.71

u = V0sin(x/L)cos(y/L)cos(z/L)

v = −V0cos(x/L)sin(y/L)cos(z/L)

w = 0

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + sin(2y)) (cos(2z) + 2)

]
Mesh: 64x64x64

p = 4 (5th order)
3http://www.as.dlr.de/hiocfd/case c3.5.pdf

Validation Results:Taylor Green Vortex

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time

E
n
e
rg

y

Taylor Green Vortex, Re=1600

Spectral

5th Order

Energy

Validation Results:Taylor Green Vortex

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time

D
is

s
ip

a
ti
o
n

Taylor Green Vortex, Re=1600

Spectral

5th Order

Dissipation

Validation Results:Taylor Green Vortex

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Time

E
n
s
tr

o
p
h
y

Taylor Green Vortex, Re=1600

Spectral

5th Order

Enstrophy

Timing Results

All results are computed in serial on Intel Xeon E5-2670 processors
with a clock speed of 2.6Ghz and 2GB per core memory.
• Mount Moran TAU benchmark = 7.2 sec

Mount Moran Specs:
• 93.92 Tflops cluster serving the University of Wyoming
• 218 nodes with 2, eight-core Intel Xeon E5-2670 Sandy Bridge
processors on each node (3,488)

Timing Results: 3D Euler

DOF=(number of fields)(p + 1)3NxNyNz

Three-dimensional Euler Equations
Code Order DOF Mesh Size Time/Res/DOF

Finite Difference 1 5,151,505 100 x 100 x 100 5.39e-8
Finite Difference 3 5,151,505 100 x 100 x 100 8.37e-8
Finite Difference 5 5,151,505 100 x 100 x 100 1.14e-7

DGSEM 2 5,000,000 50x50x50 7.77e-8
DGSEM 3 4,851,495 33x33x33 6.54e-8
DGSEM 4 5,000,000 25x25x25 6.33e-8
DGSEM 5 5,000,000 20x20x20 6.38e-8
DGSEM 6 5,306,040 17x17x17 6.57e-8
DGSEM 7 4,705,960 14x14x14 6.92e-8
DGSEM 8 4,423,680 12x12x12 7.36e-8
DGSEM 9 4,851,495 11x11x11 7.57e-8
DGSEM 10 5,000,000 10x10x10 7.83e-8
DGSEM 16 4,423,680 6x6x6 1.03e-7
DGSEM 24 4,423,680 4x4x4 1.35e-7
DGSEM 32 4,423,680 3x3x3 1.78e-7
DGSEM 48 552,960 1x1x1 2.41e-7

Timing Results: 3D Euler

0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5
x 10

−7

Order

C
P

U
 T

im
e

/R
e

s
/D

O
F

 (
s
e

c
o

n
d

s
)

3D Euler Equations: Finite Difference vs DGSEM

Finite Difference

DGSEM

Timing Results: 3D Euler

0 2 4 6 8 10 12 14 16
5

6

7

8

9

10

11

12

13
x 10

−8

Order

C
P

U
 T

im
e

/R
e

s
/D

O
F

 (
s
e

c
o

n
d

s
)

3D Euler Equations: Finite Difference vs DGSEM

Finite Difference

DGSEM

At 5th order, DGSEM is ∼twice as efficient!

Timing Results: Cartesian 3D Navier-Stokes

DOF=(number of fields)(p + 1)3NxNyNz

Three-dimensional Compressible Navier-Stokes Equations
Code Order DOF Mesh Size Time/Res/DOF

DGSEM 2 5,000,000 50x50x50 2.74e-7
DGSEM 3 4,851,495 33x33x33 2.59e-7
DGSEM 4 5,000,000 25x25x25 2.45e-7
DGSEM 5 5,000,000 20x20x20 2.68e-7
DGSEM 6 5,306,040 17x17x17 2.97e-7
DGSEM 7 4,705,960 14x14x14 3.25e-7
DGSEM 8 4,423,680 12x12x12 3.30e-7
DGSEM 9 4,851,495 11x11x11 3.63e-7
DGSEM 10 5,000,000 10x10x10 3.87e-7
DGSEM 16 4,423,680 6x6x6 8.30e-7

Timing Results: Cartesian 3D Navier-Stokes

0 2 4 6 8 10 12 14 16
2

3

4

5

6

7

8

9
x 10

−7

Order

C
P

U
 T

im
e

/R
e
s
/D

O
F

 (
s
e
c
o
n
d
s
)

DGSEM: 3D Navier−Stokes

DGSEM

Laslo Diosady and Scott Murman ≈ 1.5e−7 (non-Cartesian) 4

F. Hindenlang, G. Gassner ≈ 4.0e−7 (non-Cartesian) 5

4Design of a Variational Multiscale Method for Turbulent Compressible Flows
5Explicit Discontinuous Galerkin methods for unsteady problems

Results: Parallel Scalability

• Strong Scalability

• Computed on Mount Moran and Yellowstone

• Taylor-Green Vortex

MPI Implementations:

• MPI Cartesian Topology

• MPI Derived Data Types

- MPI Type Contiguous (x-y plane faces)
- MPI Type Vector (x-z and y-z plane faces)

Yellowstone Strong Scalability Results

Following results are computed in parallel on Intel Xeon E5-2670
processors with a clock speed of 2.6Ghz and 2GB per core memory.
•Yellowstone TAU benchmark = 8.4 sec

Yellowstone Specs:
• 1.504-petaflops peak IBM iDataPlex cluster
• 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge) processors with
Advanced Vector Extensions (AVX), 8 flops per clock (72,576)
• 144.58 TB total system memory

Results: Strong Scalability P = 4

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 1,310,720,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 4
Procs DOF per Proc Efficiency

1024* 1,280,000 1.0000
2048 640,000 0.9801
4096 320,000 0.9327
8192 160,000 0.9037
16384 80,000 0.8358

*Assumed Perfect

Results: Strong Scalability P = 7

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 5,368,709,120
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 7
Procs DOF per Proc Efficiency

1024* 5,242,880 1.0000
2048 2,621,440 0.9923
4096 1,310,720 0.9793
8192 665,360 0.9580
16384 327,680 0.9210

*Assumed Perfect

Results: Strong Scalability P = 9

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 10,485,760,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 9
Procs DOF per Proc Efficiency

1024* 10,240,000 1.0000
2048 5,120,000 0.9877
4096 2,560,000 0.9768
8192 1,280,000 0.9633
16384 640,000 0.9340

*Assumed Perfect

Results: Parallel Scalability

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

number of processors

sp
ee

du
p

optimal
P=4
P=7
P=9

Future Work: Short Term Goals

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

- Tamrex3DG = TeXsor3DG + SAMRAI

– analogous version of SAMARC
– different solution orders on different blocks

• 3D Navier-Stokes Dual Mesh/Dual Flow Solver

- analogous version of HELIOS

Future Work: Short Term Goals

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

- Tamrex3DG = TeXsor3DG + SAMRAI

– analogous version of SAMARC
– different solution orders on different blocks

• 3D Navier-Stokes Dual Mesh/Dual Flow Solver

- analogous version of HELIOS

Future Work: Short Term Goals

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

- Tamrex3DG = TeXsor3DG + SAMRAI

– analogous version of SAMARC
– different solution orders on different blocks

• 3D Navier-Stokes Dual Mesh/Dual Flow Solver

- analogous version of HELIOS

Future Work: Short Term Goals

• Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver

- Tamrex3DG = TeXsor3DG + SAMRAI

– analogous version of SAMARC
– different solution orders on different blocks

• 3D Navier-Stokes Dual Mesh/Dual Flow Solver

- analogous version of HELIOS

Future Work: Short Term Goals cont.

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Future Work: Long Term Goals

• Use Tamrex3DG in HELIOS?

• Dynamic LES Model

- possible dealiasing required

• Particle Tracking

- implement scalar equation

• Newton Implicit Solver

• Discrete Adjoint for design optimization and driver for AMR

• GPGPU version of TeXsor3DG

Special Thanks!

Jay Sitaraman-University of Wyoming (Helios)
Andy Wissink-Army Aviation Development Directorate

Thanks!

• Office of Naval Research: ONR Grant N00014-14-1-0045 (Program
Manager: Judah Milgram)

• Army Aviation Development Directorate

• High-performance computing support from Yellowstone
(ark:/85065/d7wd3xhc) provided by NCAR’s Computational and
Information Systems Laboratory, sponsored by the National Science
Foundation

• University of Wyoming Advanced Research Computing Center

• NASA Ames

Questions?

LidRe100000Periodic.mp4
Media File (video/mp4)

